
The three diagrams each show a specific scenario. They don't show all solutions, only a
selected course of events.

The last diagram also specifies a timing constraint (in blue) to separate the help message
from the scan message for the next passenger.

sd Boarding Success

request

:Scanner :Controller :Backend :Turnstile :LED :Display

request

ok

unlock
green

welcome

passed
boarded

red
scan

request

:Scanner :Controller :Backend :Turnstile :LED :Display

request
ok

unlock
green

lock
welcome

red
scan

sd Valid Pass No Entry

request

:Scanner :Controller :Backend :Turnstile :LED :Display

request
no

help

scan

sd Invalid Pass No Entry

{5 sec}

State Machine

We first look at the lifeline for the controller and highlight it in all of the three diagrams:

We can simply start with state idle in the beginning, at the top of the first lifeline, and then
add incoming and outgoing messages as transitions, step by step.

sd Boarding Success

request

:Scanner :Controller :Backend :Turnstile :LED :Display

request

ok

unlock
green

welcome

passed
boarded

red
scan

request

:Scanner :Controller :Backend :Turnstile :LED :Display

request
ok

unlock
green

lock
welcome

red
scan

sd Valid Pass No Entry

request

:Scanner :Controller :Backend :Turnstile :LED :Display

request
no

help

scan

sd Invalid Pass No Entry

idle

s1

request / request

s3

no / help;
start_timer(‘th’, 5000)

ok /
unlock; green;

welcome;
start_timer(’t’, 3000)

s2

idle

t / lock; red; scan

idle

th / scan

passed /
boarded; red; scan idle

stm Controller

Turnstile — Controller

For the detailed look at the interaction between turnstile and controller, we mark the
relevant lifelines and messages in both diagrams that are relevant for the turnstile:

From these we can extract two simple diagrams:

With an alt fragment, we can combine these two into a single one:

sd Boarding Success

request

:Scanner :Controller :Backend :Turnstile :LED :Display

request

ok

unlock
green

welcome

passed
boarded

red
scan

request

:Scanner :Controller :Backend :Turnstile :LED :Display

request
ok

unlock
green

lock
welcome

red
scan

sd Valid Pass No Entry

:Controller :Turnstile

unlock

passed

:Controller :Turnstile

unlock

lock

This interaction contains a mixed initiative. We can illustrate this more clearly when we
exaggerate the runtime of the messages by showing them with a slope:

This means that the controller times out and wants to lock the turnstile again, but just after
it sent the message lock, the passenger goes through and boards the airplane and the
turnstile sends passed.

:Controller

unlock

passedalt

:Turnstile

lock

sd Turnstile Control

:Controller

unlock

passed

:Turnstile

lock

In the state machine we did not take care of this! After the timer t expires and we send lock
to the turnstile, we are again in state idle. If now the message passed arrives, it is discarded
since idle does not have any outgoing transition triggered by a message passed. We would
have missed a boarded passenger because we did not send it to the backend!

We can solve the problem by extending the state machine with a new transition:

The transition (here marked in red) goes from state idle to idle (hence a self-transition) and
registers the passenger with the backend. It could also be specified as an internal transition
of state idle.

idle

s1

request / request

s3

no / help;
start_timer(‘th’, 5000)

ok /
unlock; green;

welcome;
start_timer(’t’, 3000)

s2

idle

t / lock; red; scan

idle

th / scan

passed /
boarded; red; scan idle

stm Controller

idle

s1

request / request

s3

no / help;
start_timer(‘th’, 5000)

ok /
unlock; green;

welcome;
start_timer(’t’, 3000)

s2

idle

t / lock; red; scan

idle

th / scan

passed /
boarded; red; scan idle

passed /
boarded; red; scan idle

stm Controller

